Balanced study: Depth of anaesthesia and delirium

Professor Kate Leslie

Professor, Royal Melbourne Hospital

In this talk I will speak about the magnitude of the problem of postoperative delirium, preventing delirium using the BIS monitor, and offer some advice and conclusions.

Postoperative delirium (POD) is part of a spectrum of disorders that have recently been described as "perioperative neurocognitive disorders (PND)". POD is an acute onset fluctuating change in mental status characterized by a reduced awareness of the environment and disturbance of attention. It is common in the first seven days postoperatively, particularly in older adults. POD is associated with adverse outcome including increased risk of death in elderly patients. However there is inadequate research about how to prevent or treat it including:²

• Association of postoperative delirium with poor outcome not clearly defined

- Anti-inflammatory studies in animals not replicated in humans
- Effects of risk factor modification and lifestyle improvement not tested
- Use of anticholinesterases not explored perioperatively
- Choice of anaesthetic not proven to influence outcome
- Effect of depth of anaesthesia uncertain

As more than 300 million people have surgery every year and an increasing number of them are elderly and at risk of delirium, more action is required.

The pathophysiologic basis for delirium is uncertain. Anaesthesia and surgery are associated with immunosuppression, inflammation and hypotension. These may be greater with deep anaesthesia.³ More than nine studies investigated the association between deep anaesthesia and delirium. Their methodologies have varied widely:

Paper	n	Surgery	Tests	Follow- up	Groups
Wong 2002 ⁴	68	TJA	Chart	3 days	Routine vs. BIS 50-60
Sieber 2010 ⁵	114	#NOF	CAM	2 days	BIS=50 vs. BIS>80
Jildenstal 2011 ⁶	450	Eyes	MMT	1 month	Routine vs. AEP
Ballard 2012 ⁷	74	Non-cardiac	MMSE	1 year	Routine vs. BIS
Chan 2013 ⁸	902	Non-cardiac	CAM	3 months	Routine vs. BIS
Radtke 2013 ⁹	1,155	Non-cardiac	DSM- IV	3 months	Routine vs. BIS
Whitlock 2016 ¹⁰	310	Cardio- thoracic	CAM	10 days	ETAC vs. BIS
Sieber 2018 ¹¹	200	#NOF	CAM	5 days	OAA/S 0-2 vs. OAA/S 3-5

Wildes 2019 ¹²	1,232	Major surgery	CAM	5 days	Routine	VS.	BS
					avoidance		

Most studies have reported more delirium in the deep group than the light group, sometimes at a statistically significant level. Only one has shown more delirium in the light group than the deep group (Wildes 2019):

Paper	n	Surgery	Groups	Delirium
Wong 2002	68	TJA	Routine vs. BIS 50-60	1 vs. 0
Sieber 2010	114	#NOF	BIS=50 vs. BIS>80	40% vs. 19%
Jildenstal 2011	450	Eyes	Routine vs. AEP	16 vs. 2
Ballard 2012	74	Non-cardiac	Routine vs. BIS	89% vs. 58%
Chan 2013	902	Non-cardiac	Routine vs. BIS	24% vs. 16%
Radtke 2013	1,155	Non-cardiac	Routine vs. BIS	21% vs. 17%
Witlock 2016	310	Cardio-thoracic	ETAC vs. BIS	28% vs. 19%
Sieber 2018	200	#NOF	BIS=50 vs. BIS>80	39% vs. 34%
Wildes 2019	1,232	Major surgery	Routine vs. BS avoidance	23% vs. 26%

We conducted a delirium sub-study of the Balanced Anaesthesia Study at 8 participating sites in Australia, China and the United States. The manuscript from this paper is currently under review at a journal. The results will be presented at the Auckland City Symposium.

References

1 Evered L, Silbert B, Knopman DS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. *Br J Anaesth* 2018; **121**: 1005-12

2 Evered LA, Silbert BS. Postoperative Cognitive Dysfunction and Noncardiac Surgery. *Anesth Analg* 2018; **127**: 496-505

3 Vlisides PE, Ioannidis JPA, Avidan MS. Hypnotic depth and postoperative death: a Bayesian perspective and an Independent Discussion of a clinical trial. *Br J Anaesth* 2019; **122**: 421-7

4 Wong C, Fitzgerald P, McCarthy R. Comparison of depth of anesthesia indices ("SNAP" vs. bispectral) during balanced general anesthesia in patients undergoing outpatient gynaecologic surgery (abstract). *Anesthesiology* 2002

5 Sieber F, Zakriya K, Gottschalk A, et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. *Mayo Clin Proc* 2010; **85**: 18-26

6 Jildenstal PK, Hallen JL, Rawal N, Gupta A, Berggren L. Effect of auditory evoked potential-guided anaesthesia on consumption of anaesthetics and early postoperative cognitive dysfunction: a randomised controlled trial. *European journal of anaesthesiology* 2011; **28**: 213-9

7 Ballard C, Jones E, Gauge N, et al. Optimised anaesthesia to reduce post operative cognitive decline (POCD) in older patients undergoing elective surgery, a randomised controlled trial. *PlosOne* 2012; **7**: e37410

8 Chan M, Cheng B, Lee T, Gin T, Group CT. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. *J Neurosurg Anesthesiol* 2013; **25**: 33-42

9 Radtke F, Franck M, Lendner J, Kruger S, Wernecke K, Spies C. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. *Br J Anaesth* 2013; **110** (S1): i98-i105

10 Whitlock EL, Torres BA, Lin N, et al. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. *Anesth Analg* 2014; **118**: 809-17

11 Sieber F, Neufeld KJ, Gottschalk A, et al. Depth of sedation as an interventional target to reduce postoperative delirium: mortality and functional outcomes of the Strategy to Reduce the Incidence of Postoperative Delirium in Elderly Patients randomised clinical trial. *Br J Anaesth* 2019; **122**: 480-9

12 Wildes TS, Mickle AM, Ben Abdallah A, et al. Effect of Electroencephalography-Guided Anesthetic Administration on Postoperative Delirium Among Older Adults Undergoing Major Surgery: The ENGAGES Randomized Clinical Trial. *Jama* 2019; **321**: 473-83